Effects of multiple occupancy and interparticle interactions on selective transport through narrow channels: theory versus experiment.

نویسنده

  • Anton Zilman
چکیده

Many biological and artificial transport channels function without direct input of metabolic energy during a transport event and without structural rearrangements involving transitions from a closed to an open state. Nevertheless, such channels are able to maintain efficient and selective transport. It has been proposed that attractive interactions between the transported molecules and the channel can increase the transport efficiency and that the selectivity of such channels can be based on the strength of the interaction of the specifically transported molecules with the channel. Herein, we study the transport through narrow channels in a framework of a general kinetic theory, which naturally incorporates multiparticle occupancy of the channel and non-single-file transport. We study how the transport efficiency and the probability of translocation through the channel are affected by interparticle interactions in the confined space inside the channel, and establish conditions for selective transport. We compare the predictions of the model with the available experimental data and find good semiquantitative agreement. Finally, we discuss applications of the theory to the design of artificial nanomolecular sieves.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of jamming on nonequilibrium transport times in nanochannels.

Many biological channels perform highly selective transport without direct input of metabolic energy and without transitions from a "closed" to an "open" state during transport. Mechanisms of selectivity of such channels serve as an inspiration for creation of artificial nanomolecular sorting devices and biosensors. To elucidate the transport mechanisms, it is important to understand the transp...

متن کامل

Effect of the Interparticle Interactions on Adsorption-Induced Frequency Shift of Nano-beam-Based Nanoscale Mass-Sensors: A Theoretical Study

It is well-known that the Interparticle interactions between adsorbates and surface of an adsorbent can affect the surface morphology. One of the consequences of this issue is that the resonant frequency of a nanoscale resonator can be changed due to adsorption. In this study we have chosen a cantilever-based nanoscale mass-sensor with a single nanoparticle at its tip. Using the classical...

متن کامل

Detectable inertial effects on Brownian transport through narrow pores

We investigate the transport of suspended Brownian particles dc driven along corrugated narrow channels in a regime of finite damping. We demonstrate that inertial corrections cannot be neglected as long as the width of the channel bottlenecks is smaller than an appropriate particle diffusion length, which depends on both the temperature and the strength of the dc drive. Therefore, transport th...

متن کامل

Transport and selective chaining of bidisperse particles in a travelling wave potential.

We combine experiments, theory and numerical simulation to investigate the dynamics of a binary suspension of paramagnetic colloidal particles dispersed in water and transported above a stripe-patterned magnetic garnet film. The substrate generates a one-dimensional periodic energy landscape above its surface. The application of an elliptically polarized rotating magnetic field causes the lands...

متن کامل

Synthesis and Biological Evaluation of New Tricyclic Dihydropyridine Based Derivatives on Potassium Channels

The present study reports a microwave-assisted method for the synthesis of twelve novel tricyclic 1,4-dihydropyridine derivatives in which dimethyl-substituted cyclohexane and / or tetrahydrothiophene rings are fused to the DHP ring. The structures of the compounds were confirmed by spectral methods and elemental analysis. The potassium channel opening effects of the compounds were determined o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biophysical journal

دوره 96 4  شماره 

صفحات  -

تاریخ انتشار 2009